
Slowly Changing Dimensions
in Postgres

Marc Linster
PGConf.EU 2025

http://pgconf.eu

What are SCDs and why do we care about them?

● Reference data changes over time
○ Price lists
○ Bill of Material
○ Employee hierarchy
○ Project assignments
○ …

● Multiple ways to track reference data changes over time
○ When was the change effective?
○ From when to when how long was it valid?
○ What were the prior values?
○ What was the history, …?

● SCDs introduced by Ralph Kimball

● Pros and cons - depending on desired outcome

● Powerful tools in Postgres to keep it simple

Six Types of SCDs

Type 1: Corrections in the data - no tracking of when the change happened (except in the log) or how long it was valid

Type 2: A new row for every change, with start date and end date.

Type 3: Track date of last change and prior value

Type 4: A new row for every change, with validity date

Type 5: (1+4): Current table + history table

Type 6: 1+2+3 combined into a single table with start and end dates and a flag to indicate which record represents the
current value.

Type 2

● Each change is assigned a new row in the data table, and the primary key is expanded with start

date and end date columns.

● NULL can be used to indicate that no end date has been set; however, in that case, the column

cannot be part of the primary key definition, as SQL does not allow the NULL value in a primary key

column.

product_id price start_date end_date

12345 19.99 2025-01-01 2025-01-31

12345 20.99 2025-02-01 NULL

Type 3

● Extra columns to record the previous value and the date of the last change. This only enables

tracking of a single prior version.

product_id price last_update prior_price

12345 20.99 2025-01-01 19.99

Type 4

● The current price and the historical prices are kept in the same table. The current price is the price

with the most current effective date.

product_id price effective_date

12345 19.99 2025-01-01

12345 20.99 2025-02-01

Type 5

● Combines Type 1 and Type 4

● Includes both the current data and a history table.

product_id price

12345 20.99

product_id price effective_date

12345 19.99 2025-01-01

12345 20.99 2025-02-01

Type 6

● Merges Types 1, 2, and 3 into a single table

● Includes start and end dates for changes and a flag to indicate which record shows the current

value.

product_id price start_date end_date current

12345 19.99 2025-01-01 2025-01-31 false

12345 20.99 2025-02-01 NULL true

Pros and Cons of the Different Forms of SCDs
SCD Type Pro Con

Type 1 Simple No historical data

Type 2 Simple Lookups can become expensive if the dimension sees a lot of changes.
Start date and end date consistency can be challenging to manage.

Type 3 Simple Not an effective way to track historical data

Type 4 Relatively simple Lookups can become expensive if the dimension sees a lot of changes.
It can be challenging to answer questions like "What was the price on Feb 2, 2025?''

Type 5 Addresses some of the
problems of Type 4. Very
fast access to current
value.

Inserts and updates cause transactions in two tables.
Transactions referring to historical data are problematic!!!

Type 6 Fast lookups for current
data.

Start date and end date consistency can be challenging (Except in PostgreSQL).
The table can become large if data changes frequently.

Perceived Problems with Type 6 SCDs

Developers, especially those who don’t know PostgreSQL very well, are often concerned about:

1. Defining ranges

2. Managing the boundaries between ranges

3. Finding out what the value was on a given day

4. Avoiding overlaps between ranges

Postgres to the Rescue
1. How to define ranges

⇒ Postgres DATERANGE

No need to have start & end columns!

Simple queries using '@>' for inclusion

2. Managing boundaries

⇒ [,],(,) define boundaries cleanly

⇒ e.g.: [2025-06-01, 2025-07-01)

No need to have custom
inclusion/exclusion logic

3. Finding out what the value was on a
given day

SELECT price FROM product_price_scd
 WHERE validity @>'2025-06-18'::date
 AND product_id = 12345;

Easy peasy!

4. Avoiding overlapping ranges
CREATE TABLE product_price_scd (
 product_id INTEGER NOT NULL,
 price NUMERIC DEFAULT 0 NOT NULL,
 validity DATERANGE ,
 current BOOLEAN ,
 EXCLUDE USING GIST (product_id WITH =, validity WITH &&)
);

Conclusion

● Postgres simplifies the solution enormously with
○ Innovative data types: DATERANGE

○ Extension: BTREE_GIST

■ Combination of two index types

■ BTREE (for equality)

■ GiST (for date ranges, geometry, etc.)

■ Great for multi-column queries and exclusion constraints

● No custom code to deal with start/end date, overlapping ranges, or to find the value for a give day!

● Accompanying blog: https://marclinster.medium.com/

https://marclinster.medium.com/

Use Postgres - Get Stuff Done!

