Slowly Changing Dimensions
in Postgres

Marc Linster
PGConf.EU 2025

“ dbtune

Digital
Learning
Hub_

http://pgconf.eu

What are SCDs and why do we care about them?

Reference data changes over time
o Price lists

Bill of Material

Employee hierarchy

Project assignments

o

e Multiple ways to track reference data changes over time
When was the change effective?
From when to when how long was it valid?
What were the prior values?

What was the history, ...?

e SCDsintroduced by Ralph Kimball

O O O o0 € O o0 0

e Prosand cons - depending on desired outcome

e Powerful tools in Postgres to keep it simple

Six Types of SCDs

Type 1:
Type 2:
Type 3:
Type 4:
Type 5:

Type 6:

Corrections in the data - no tracking of when the change happened (except in the log) or how long it was valid
A new row for every change, with start date and end date.

Track date of last change and prior value

A new row for every change, with validity date

(1+4): Current table + history table

1+2+3 combined into a single table with start and end dates and a flag to indicate which record represents the
current value.

Type 2

e Eachchangeis assigned a new row in the data table, and the primary key is expanded with start
date and end date columns.

e NULL can be used toindicate that no end date has been set; however, in that case, the column
cannot be part of the primary key definition, as SQL does not allow the NULL value in a primary key

column.
product_id price start_date end_date
12345 19.99 2025-01-01 2025-01-31

12345 20.99 2025-02-01 NULL

Type 3

e Extracolumns to record the previous value and the date of the last change. This only enables
tracking of a single prior version.

product_id price last_update prior_price

12345 20.99 2025-01-01 19.99

Type 4

e Thecurrent price and the historical prices are kept in the same table. The current price is the price
with the most current effective date.

product_id price effective_date

12345 19.99 2025-01-01

12345 20.99 2025-02-01

Type 5

e Combines Type 1 and Type 4
e Includes both the current data and a history table.

product_id price
12345 20.99
product_id price effective_date
12345 19.99 2025-01-01
12345 20.99 2025-02-01

Type 6

e Merges Types 1, 2,and 3into a single table
e Includesstart and end dates for changes and a flag to indicate which record shows the current

value.
product_id price start_date end_date current
12345 19.99 2025-01-01 2025-01-31 false

12345 20.99 2025-02-01 NULL true

Pros and Cons of the Different Forms of SCDs

SCD Type Pro Con
Type 1 Simple No historical data
Type 2 Simple Lookups can become expensive if the dimension sees a lot of changes.
Start date and end date consistency can be challenging to manage.
Type 3 Simple Not an effective way to track historical data
Type 4 Relatively simple Lookups can become expensive if the dimension sees a lot of changes.
It can be challenging to answer questions like "What was the price on Feb 2, 2025?"
Type 5 Addresses some of the Inserts and updates cause transactions in two tables.
problems of Type 4. Very Transactions referring to historical data are problematic!!!
fast access to current
value.
Type 6 Fast lookups for current Start date and end date consistency can be challenging (Except in PostgreSQL).

data.

The table can become large if data changes frequently.

Perceived Problems with Type 6 SCDs

Developers, especially those who don’t know PostgreSQL very well, are often concerned about:
1. Defining ranges

2 Managing the boundaries between ranges

3. Finding out what the value was on a given day
4

Avoiding overlaps between ranges

Postgres to the Rescue

1. How todefine ranges
= Postgres DATERANGE
No need to have start & end columns!

Simple queries using '@>' for inclusion

3. Finding out what the value wason a

given day
SELECT price FROM product price scd
WHERE validity @'2025-06-18"'::date
AND product id = 12345;

Easy peasy!

2. Managing boundaries
= [,],(,) define boundaries cleanly
= e.g.:[2025-06-01, 2025-07-01)

No need to have custom
inclusion/exclusion logic

4. Avoiding overlapping ranges
CREATE TABLE product_price_scd (
product_id INTEGER NOT NULL,
price NUMERIC DEFAULT 0 NOT NULL,
validity DATERANGE ,
current BOOLEAN,
EXCLUDE USING GIST (product_id WITH =, validity WITH &&)

Conclusion

e Postgres simplifies the solution enormously with
o Innovative data types: DATERANGE
o Extension: BTREE_GIST
m Combination of two index types
m BTREE (for equality)
m GiST (for date ranges, geometry, etc.)
m Great for multi-column queries and exclusion constraints

e No custom code to deal with start/end date, overlapping ranges, or to find the value for a give day!
e Accompanying blog: https://marclinster.medium.com/

https://marclinster.medium.com/

Use Postgres - Get Stuff Done!

